5th Annual

Cloudera Government Forum

Cloudera Government Forum

The Essentials of Apache Hadoop The What, Why and How to Meet Agency Objectives Sarah Sproehnle, Vice President, Customer Success

Cloudera Government Forum

Introduction

What is Apache Hadoop?

- Hadoop is a software framework for storing, processing, and analyzing "big data"
 - Distributed
 - Scalable
 - Fault-tolerant
 - Open source

A Large (and Growing) Ecosystem

About Cloudera

- The leader in Apache Hadoop-based software and services
- Founded in 2008 by leading experts on Hadoop
 - Over 1000 employees
 - Global operations spanning over 20 countries
- Provides support, consulting, training, and certification for Hadoop users
- Employs committers to virtually every significant Hadoop-related project
- Many authors of industry standard books on Apache Hadoop projects
 - Tom White, Lars George, Kathleen Ting, etc.

CDH

- CDH (Cloudera's Distribution, including Apache Hadoop)
- 100% open source, enterprise-ready distribution of Hadoop and related projects
- The most complete, tested, and widely-deployed distribution of Hadoop
- Integrates all the key Hadoop ecosystem projects

Vendor Integration

Cloudera Government Forum

How it Works

Traditional Large-Scale Computation

Traditionally, computation has been processor-bound

- Relatively small amounts of data
- Lots of complex processing

The early solution: bigger computers

- Faster processor, more memory
- But even this couldn't keep up

Distributed Systems

The better solution: more computers

• Distributed systems – use multiple machines for a single job

"In pioneer days they used oxen for heavy pulling, and when one ox couldn't budge a log, we didn't try to grow a larger ox. We shouldn't be trying for bigger computers, but for *more systems* of computers."

– Grace Hopper

Distributed Systems: The Data Bottleneck (1)

- Traditionally, data is stored in a central location
- Data is copied to processors at runtime
- Fine for limited amounts of data

Distributed Systems: The Data Bottleneck (2)

- Modern systems have much more data
 - terabytes+ a day
 - petabytes+ total
- We need a new approach...

The Origins of Hadoop

- Hadoop is based on work done at Google in the late 1990s/early 2000s
- Google's problem:
 - Indexing the entire web requires massive amounts of storage
 - A new approach was required to process such large amounts of data
- Google's solution:
 - GFS, the Google File System described in a paper released in 2003
 - Distributed MapReduce described in a paper released in 2004
- Doug Cutting and others read these papers and implemented a similar, open source solution
 - This is what would become Hadoop

What is Hadoop?

• Hadoop is a distributed data storage and processing platform

- Stores massive amounts of data in a very resilient way
- Distributes the processing to where the data is stored
- Tools built around Hadoop (the 'Hadoop ecosystem') can be configured/extended to handle many different tasks
 - Extract Transform Load (ETL)
 - BI environment
 - Predictive analytics
 - Statistical analysis
 - Machine learning

Hadoop is Scalable

- Adding nodes (machines) adds capacity proportionally
- Increasing load results in a graceful decline in performance
 - Not failure of the system

Hadoop is Fault Tolerant

- Node failure is inevitable
- What happens?
 - System continues to function
 - Master re-assigns work to a different node
 - Data replication means there is no loss of data
 - Nodes which recover rejoin the cluster automatically

The Hadoop Ecosystem (1)

- Many tools have been developed around 'Core Hadoop'
 - Known as the Hadoop ecosystem
- Designed to make Hadoop easier to use, or to extend its functionality
- All are open source
- The ecosystem is growing all the time

The Hadoop Ecosystem (2)

• Examples of Hadoop ecosystem projects (all included in CDH):

Project	What does it do?
Spark	In-memory and streaming processing framework
HBase	NoSQL database built on HDFS
Hive	SQL processing engine designed for batch workloads
Impala	SQL query engine designed for BI workloads
Parquet	Very efficient columnar data storage format
Sqoop	Data movement to/from RDBMSs
Flume, Kafka	Streaming data ingestion
Solr	Powerful text search functionality
Hue	Web-based user interface for Hadoop
Sentry	Authorization tool, providing security for Hadoop

Cloudera Government Forum

Hadoop in the Real World

Five Really Popular Use Cases

- ETL Processing
- Business Intelligence
- Predictive Analytics
- Enterprise Data Hub
- Low-cost Storage of Large Data Volumes

#1 – Traditional ETL Processing

- ETL: Extract, Transform, Load
- Challenges:
 - Too much data
 - Takes too long
 - Too costly

#1-ETL Processing with Hadoop

- Hadoop cluster is used for ETL
 - Often now ELT: Extract, Load, then Transform
- Structured and unstructured data is moved into the cluster
- Once processed, data can be analyzed in Hadoop or moved to the EDW

#1-Vendor Integration - ETL

 For more information visit: <u>http://www.cloudera.com/partners/partners-</u> <u>listing.html</u>

2 – Traditional Business Intelligence

- BI traditionally takes place at the data warehouse layer
- Problem: EDW can't keep up with growing data volumes
 - Performance declines
 - Increasing capacity can be very expensive
 - Archived data is not available for analysis

2 – Business Intelligence with Hadoop

• Use the EDW for the tasks for which it is best suited

2 – Vendor Integration - BI

• For more information visit: http://www.cloudera.com/partners/partners-

listing.html

3 – Predictive Analytics

- Predictive Analytics (Eckerson Group definition)
 - The use of statistical or machine learning models to discover patterns and relationships in data that can help business people predict future behavior or activity
- The Hadoop platform can run analytic workloads on large volumes of diverse data
 - Statistical models can be created and run inside the Hadoop environment
- Entire data sets can be used to create models
 - There is no need to sample data
- Hadoop provides an environment that makes self-service analytics possible
 - No need for ETL developers to stage data for data scientists

3 - Predictive Analytics: Cerner Corporation

Cerner Corporation

- Healthcare IT space
- Solutions and Services Used by 54,000 medical facilities around the world

The problem

- Healthcare data is fragmented and lives in silos
- The data was used for historical reporting

The solution

- Build a comprehensive view of population health using a single platform
- Use predictive analytics to
 - Improve patient outcomes
- Increase efficiency / Reduce costs
 cloudera

3 – Vendor Integration – Predictive Analytics

 For more information visit: <u>http://www.cloudera.com/partners/partners-</u> listing.html

4 – The Need for the Enterprise Data Hub

Thousands of Employees & Lots of Inaccessible Information

Heterogeneous Legacy IT Infrastructure

Silos of Multi-Structured Data Difficult to Integrate

4 – The Enterprise Data Hub: One Unified System

Information & data accessible by all for insight using leading tools and apps

Enterprise Data Hub Unified Data Management Infrastructure

Ingest All Data Any Type Any Scale From Any Source

5 - Low-cost Data Storage (1)

• Hadoop combines industry standard hardware and a fault tolerant architecture

- This combination provides a very cost effective data storage platform
- The data stored on Hadoop is protected from loss by HDFS
 - Data replication ensures that no data is lost
 - The self-healing nature of Hadoop ensures that data is available when you need it
- Hadoop enables users to store data which was previously discarded due to the cost of saving it
 - Transactional
 - Social media
 - Sensor
 - Click stream

5 - Low-cost Data Storage (2)

• The low cost of HDFS storage enables the following use-cases:

- Enterprise Data Hub (EDH)
- Active data archive
- Staging area for data warehouses
- Staging area for analytics store
- Sandbox for data discovery
- Sandbox for analytics

In Summary, Why Do You Need Hadoop?

- More data is coming
 - Internet of things
 - Sensor data
 - Streaming
- More data means bigger questions, better answers
- Hadoop easily scales to store and handle all of your data
- Hadoop is cost-effective
 - Provides a significant cost-per-terabyte saving over traditional, legacy systems
- Hadoop integrates with your existing datacenter components
- Answer questions that you previously could not ask

Cloudera Government Forum

Thank You

© Cloudera, Inc. All rights reserved.